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Abstract We discuss the partition function view of the Schramm-Loewner evolution. After
reviewing a number of known results in the framework of Brownian loop measures and
scaling rules for partition functions, we give some speculation about multiply connected
domains.
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1 Introduction

The Schramm-Loewner evolution (SLE) has become an invaluable tool in studying scaling
limits of critical two-dimensional lattice models in statistical mechanics. We will not de-
scribe SLE in detail here, allowing the reader to consult [4, 5, 8, 9], e.g., but will start with
some general remarks.

Many lattice models in statistical physics (self-avoiding walk, loop-erased walk, perco-
lation, Ising model, . . .) are defined on a lattice. If one considers a finite piece of the lattice
and gives appropriate boundary conditions, then the models are elementary, giving certain
weights to walks or configurations. In the models we consider, these weights depend on a
parameter and for a certain critical value of the parameter one hopes to get a scaling limit.
In two dimensions, as originally predicted in [1, 2], the scaling limit is often conformally
invariant. The scaling limit is a measure on some kind of configuration in the continuum
limit; the examples we consider here are all measures on curves. In taking the scaling limit,
one often has to normalize the measure; at criticality, this normalization is typically of the
order of a power of the lattice spacing in contrast to an exponential correction off of criti-
cality. This normalization leads to scaling behavior of the limit object which is conformally
“covariant” rather than invariant.
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Oded Schramm [8] made the major breakthrough in this area when he considered two
models, loop-erased random walk and the percolation exploration process (boundary of
percolation clusters with a particular boundary condition) which were conjectured to give
probability measures in the scaling limit. His beautiful argument showed that if one had a
probability measure on curves from 0 to ∞ in the upper half plane that satisfied conformal
invariance and another property that is called the domain Markov property, then the curves
must be in a one-parameter family of curves called chordal SLEκ . He gave a similar result
for curves from a boundary to an interior point giving radial SLEκ . Starting from radial SLEκ

one can also construct a measure on curves from 0 to ∞ in C, and this is called whole plane
SLEκ . One of Schramm’s starting assumptions was that SLEκ produced a conformally in-
variant family of measures. For this reason, it was natural to define SLEκ on other domains
by conformal invariance.

However, one should also be able to define SLEκ on other domains as scaling limits.
Understanding this led to development in the theory of SLE. For example, the realization
that self-avoiding walks satisfy a “restriction property” led to asking which SLEκ have this
property [7]. For other values of κ a similar relationship was found but there was a correction
term that can be interpreted in terms of Brownian loops. Also in [7], the SLE(κ,ρ) processes
were defined which are one way to describe SLE paths that are locally absolutely continuous
with respect to chordal SLEκ .

Another approach, and the one emphasized in this paper, is in terms of (normalized) par-
tition functions. One can understand SLEκ in different domains by considering the Radon-
Nikodym of the measure on one domain with respect to the other. The evolution of this
over time generally leads to a (local) martingale. This approach was emphasized in [5] and
examples are given there describing the relationship between the original lattice partition
functions and the normalized partition functions in the limit. If one knows the partition
function, one can obtain conditional distributions by means of the local martingale and the
Girsanov theorem.

Section 2 describes the partition function view of SLE measures as seen through mea-
sures that are absolutely continuous with respect to chordal SLEκ . All of the examples in
this section have appeared before although there is some novelty in the presentation here.
A reason to include it here is to emphasize that there are essentially two terms in the Radon-
Nikodym derivatives for paths stopped at a stopping time: a Brownian loop term which in-
volves the interaction of the curve with the boundary and a “partition function” term which
describes the measure of the set of possible ways of extending the path. This gets a little
more complicated when considering multiple paths so in Sect. 2.6 a measure is defined that
only considers the first (loop) term and not the continuation term.

Section 3 discusses a number of natural ways to extend definitions using a partition func-
tion and Brownian loop measure perspective. We discuss one way (there is not a unique
way) to extend SLE to multiply connected domains. In the particular case of the annulus, we
conjecture that this is the correct way to describe radial SLEκ from an interior to a boundary
point. A basic theme is that there are two base measures: SLE starting at a boundary point
(chordal) and SLE starting at an interior point (whole plane) and one should be able to define
other versions using Brownian loops and appropriate partition functions.

The Brownian loop measure is an important part of this discussion, and for this reason
we give a discussion of it in the final section. The emphasis here is on how to compute or
estimate measures of sets of loops.

I have not listed many references in this paper. This is not to imply that there have not
been many contributors to SLE; in fact, many of the ideas in the next section have been
discussed by many authors. There is an extensive bibliography on SLE in my notes [5].
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2 Partition Functions and SLE

Throughout this section we assume 0 < κ ≤ 4 unless we explicitly state otherwise.

2.1 Chordal SLE as a Probability Measure

We will give a quick review of the definition of chordal SLE in simply connected domains,
see [4, 5, 9] for more details. Chordal SLEκ , as defined by Schramm, is a family of probabil-
ity measures μ#

D(z,w) indexed by simply connected proper subdomains D of C and distinct
boundary points z, w. These measures are supported on noncrossing curves γ : (0, tγ ) → D

with γ (0+) = z, γ (tγ −) = w; more precisely, the measures are supported on equivalence
classes of curves where two curves are equivalent if one is an increasing reparametrization
of the other. The family satisfies the following two assumptions.

• Conformal invariance. If f : D → f (D) is a conformal transformation, then

f ◦ μ#
D(z,w) = μ#

f (D)(f (z), f (w)).

(The notation f ◦ μ#
D(z,w) is shorthand for the measure on curves γ in f (D) obtained

by taking the measure of f −1 ◦ γ .)
• Domain Markov property. Suppose an initial segment γ [0, s] of the curve is observed.

Then (with respect to the probability measure μ#
D(z,w)) the conditional distribution of

γ [s, tγ ] given γ [0, s] is given by

μ#
D\γ [0,s](γ (s),w).

By the Riemann mapping theorem, it suffices for defining such a family to give μ#
H
(0,∞)

where H denotes the upper half plane. If we choose a convenient parametrization of γ by
half-plane capacity and let gt denote the conformal transformation of H \ γ (0, t] onto H

satisfying gt (z) − z = o(1) as z → ∞, then gt satisfies the (chordal) Loewner differential
equation

∂tgt (z) = 2

gt (z) − Vt

, g0(z) = z. (1)

This equation is valid for any noncrossing continuous curve γ , but the assumptions on the
family μ#

D(z,w) above imply that Vt must be a driftless one-dimensional Brownian motion.
Chordal SLEκ is obtained by letting Vt = gt (γ (t)) = Uκt where Ut is a standard Brown-
ian motion. The measure μ#

D(z,w) for other simply connected D is defined by conformal
transformation.

If we make a linear change of time, we can write

∂tgt (z) = a

gt (z) − Ut

, g0(z) = z, (2)

where a = 2/κ and Ut = gt (γ (t)) is a standard Brownian motion. This makes some formu-
las slightly nicer and we will use this parametrization; one only need remember that if gt

satisfies (2), then g∗
t = gκt satisfies (1).

For 0 < κ ≤ 4, the measure μ#
H
(0,∞) is supported on simple (non-self-intersecting)

curves; for κ > 4, the curves have self-intersections. For κ ≥ 8, the paths are plane-filling.
Three important parameters associated to the measure are the boundary scaling exponent

b = bκ = 6 − κ

2κ
,
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the (one-sided) interior scaling exponent

b̃ = b̃κ = κ − 2

4
b = (6 − κ)(κ − 2)

8κ
,

and the central charge

c = cκ = (3κ − 8)b = (3κ − 8)(6 − κ)

2κ
.

We will write quantities in terms of b, b̃, c; this gives implicit dependence on κ .
If T is a stopping time for the Brownian motion, we can consider SLEκ as a probability

measure on paths γ (0, T ]. We will write μ#
H
(0,∞) for this probability measure as well

leaving implicit the dependence on T . Stopping times T can be thought of as stopping times
for the path γ ; to determine whether or not to stop at a time t one can only look at γ (0, t].

The measure on paths γ (0, T ] is a probability measure on paths starting at H, stopped at
time T , but known to continue eventually to ∞. We state this to emphasize that the curve γ

near time T does not look like the reversal of a one-sided path starting at γ (T ). This latter
measure is described by versions of whole plane SLE that we discuss later in this paper.

We will make the following notational conventions. If γ : [0, t0] → C or γ : [0,∞) → C

is a curve and t ≤ t0,

• We write γt for the path γ [0, t]. The reference can either be to the function γ : [0, t] → C

or only to the trace γ [0, t]. For simple curves these are the same thing modulo increasing
reparametrizations.

• We write γ (t) for the point on the curve at time t .
• We write γ for γ [0, t0] or γ [0,∞).
• If D is a domain, we write γt ⊂ D to mean γ (0, t] ⊂ D and we write γ ⊂ D if

γ (0, t0) ⊂ D.

If z ∈ D,w ∈ ∂D and ∂D is smooth near w, we let hD(z,w) be π times the Poisson
kernel. In other words, the probability that a Brownian motion starting at z exits D at a
smooth arc V ⊂ ∂D is given by

1

π

∫
V

hD(z,w)|dw|.

It is well known that

hH(x + iy,0) = y

x2 + y2
, hD(0, eiθ ) = 1

2
.

Under conformal transformations, we have

f ◦ hD(z,w) = |f ′(w)|hf (D)(f (z), f (w)).

If z,w are smooth boundary points, we write h∂D(z,w) for π times the boundary Poisson
kernel, i.e., the inward normal derivative of hD(z,w) at z. It satisfies

f ◦ h∂D(z,w) = |f ′(z)||f ′(w)|h∂f (D)(f (z), f (w)).

In other words, the Poisson kernel has boundary scaling exponent 1 and interior scaling
exponent 0. Two examples are

h∂H(x1, x2) = |x2 − x1|−2, h∂D(z,w) = |z − w|−2.
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2.2 Simply Connected Domains

Suppose D ⊂ H is a simply connected subdomain with H \ D bounded and
dist(0,H \ D) > 0. Let �D be the unique conformal transformation of H \ D onto H

with �D(z) = z + o(1) as z → ∞. If γ (t) is an SLEκ curve from 0 to infinity, let
τ = inf{t : dist(γ (t),H \ D) = 0}. If t < τ , we let Dt = gt (D) and �t = �Dt . The fun-
damental local martingale introduced in [7] is

Mt = exp

{
−ac

12

∫ t

0
S�s(Us) ds

}
�′

t (Ut )
b, (3)

where S denotes the Schwarzian derivative. It satisfies

dMt = b[log�′
t (Ut )]′Mt dUt , t < τ.

If we weight by the local martingale Mt , the driving function Ut satisfies

dUt = b[log�′
t (Ut )]′ dt + dWt,

where Wt is a Brownian motion in the new measure. Using Itô’s formula, one can show
that this is the same drift as one gets by taking the conformal image of SLEκ in H onto D.
In other words, SLEκ in D, at least up to time τ , can be obtained by taking SLEκ in H

and weighting locally by �′
t (Ut )

b . (Weighting locally by �′
t (Ut )

b , or any other sufficiently
differentiable function, is defined to be the same as weighting by the corresponding local
martingale; in this case the local martingale is Mt .)

We will use the interpretation of the exponential term of (3) in terms of a conformally
invariant quantity known as the (Brownian) loop measure [6]. We refer to Sect. 4 for a
definition of the loop measure, but we state that it is a σ -finite measure on unrooted loops
modulo reparametrization in C. It satisfies the following properties.

• Restriction. If D ⊂ C, the loop measure in D is the loop measure in C restricted to loops
in D.

• Conformal invariance. If f : D → f (D) is a conformal transformation, then the image
of the loop measure on D under f is the same as the loop measure in f (D).

These properties characterize the loop measure as a measure on outer boundaries or filled
“hulls” but not in general; for example, one can start with the outer boundaries of the loop
measure in C and then define in other domains by restriction. This also gives a family sat-
isfying these conditions [10]. The definition of the loop measure is up to a mutliplicative
constant which is chosen so that the natural random walk loop measure approaches the
Brownian loop measure.

We call a set K ⊂ C nonpolar if it is hit by Brownian motion with positive probability
(and hence with probability one). We write �(K1,K2;D) for the measure of the set of loops
in D that intersect both K1 and K2. If K1 is bounded, dist(K1,K2) > 0, and ∂D is nonpolar,
then �(K1,K2;D) < ∞. Also, if f : D → f (D) is a conformal transformation, then

�(f (K1), f (K2);f (D)) = �(K1,K2;D).

If K1 = γt is a curve in D with γ (0+) = 0, with corresponding conformal maps gt whose
parametrization is chosen as in (2), then

�(γt ,H \ D;H) = −a

6

∫ t

0
S�s(Us) ds.
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The a occurs because of the parametrization. If we had chosen the parametrization as in (2),
the a would be replaced with 2.

If we define

�t,D(γ ) = �(γt ,H \ D;H) := exp{�(γt ,H \ D;H)},
and let

HD(x,∞) = �′
D(x)b,

then the local martingale becomes

Mt = �t,D(γ )c/2HDt (Ut ,∞). (4)

We can think of Mt as a function of the curve γt rather than of the driving function {Us : 0 ≤
s ≤ t}. It can be shown in a straightforward manner that if γ : [0,∞) → H is a simple curve
with γ (0) = 0, γ ⊂ D and γ (t) → ∞ as t → ∞, then Mt(γ ) is continuous, stays bounded,
and

lim
t→∞Mt(γ ) = �∞,D(γ )c/2.

Since SLEκ in D satisfies these conditions for κ ≤ 4, one can use the Girsanov Theorem
(see [5]) to conclude that T = ∞ with probability one in the weighted measure and the
following.

Proposition 2.1 For κ ≤ 4, if

M∞ = lim
t→∞Mt = 1{γ ⊂ D}�∞,D(γ )c/2,

then

E[M∞] = M0 = �′
D(0)b.

This was proved in [7] for κ ≤ 8/3 (for which c ≤ 0) using a more complicated argument.
For 8/3 < κ ≤ 4 (c > 0), Mt is not bounded and the Girsanov argument is the only way I
know how to prove this. This argument does not extend to multiply connected domains, and
some of the open problems in this paper deal with this issue.

2.3 Chordal SLE as a Nonprobability Measure

It is useful to view SLE as a measure that is not a probability measure. Let us define
μH(0,∞) to be the probability measure μ#

H
(0,∞) and if D is a domain as in the previ-

ous section,

μD(0,∞) = HD(0,∞)μ#
D(0,∞),

where HD(0,∞) is the “partition function” �′
D(0)b . If D1,D2 are two such domains and

f : D1 → D2 is a conformal transformation with f (0) = 0 and f (z) ∼ z as z → ∞, then

f ◦ μD1(0,∞) = |f ′
D1

(0)|bμD2(0,∞).

If f (z) ∼ rz as z → ∞, we will write f ′(∞) = 1/r . This allows us to write the more general
relation

f ◦ μD1(0,∞) = |f ′
D1

(0)|b|f ′
D1

(∞)|bμD2(0,∞).
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If D is a simply connected domain, ∂D is smooth near w ∈ ∂D (we will call w a smooth
boundary point of D), and f : D → H is a conformal transformation with f (w) = ∞,
we write f ′(w) = [f −1]′(∞) = F ′(w) where F(w) = 1/f (w). This allows us to define
μD(z,w) = HD(z,w)μ#

D(z,w) for simply connected domains and smooth boundary points
z,w by conformal transformation using the conformal covariance rule

f ◦ μD(z,w) = |f ′(z)|b|f ′(w)|bμf (D)(f (z), f (w)).

A simple computation shows that HH(x, y) = |x − y|−2b and more generally HD(x, y) =
h∂D(z,w)b where h∂D(z,w) is as in Sect. 2.1. If κ ≤ 4, D1 ⊂ D, and ∂D1 = ∂D near smooth
boundary points z,w,

dμD1(z,w)

dμD(z,w)
(γ ) = 1{γ ⊂ D1}�(γt ,D \ D1;D)c/2. (5)

The quantity on the right is invariant under conformal transformations of D. For this reason,
the quantity on the left can be defined even if the boundary is not smooth at z,w. Similarly,
the ratio

HD1(z,w)

HD(z,w)

is a conformal invariant and is well defined even for nonsmooth boundary points.
There is a way to view (4) in terms of partition functions. Since

HD\γt (γ (t),∞)

HH\γt (γ (t),∞)
= HDt (Ut ,∞)

HH(Ut ,∞)
= HDt (Ut ,∞) = �′

t (Ut )
b,

we see that

dμD(0,∞)

dμH(0,∞)
(γT ) = 1{γT ⊂ D}�T,D(γ )c/2 HD\γT

(γ (T ),∞)

HH\γT
(γ (T ),∞)

.

This last equality holds under conformal transformation. If D1 ⊂ D are simply connected
domains, z,w are smooth points of ∂D, and D1 agrees with D in neighborhoods of z,w,
then

dμD1(z,w)

dμD(z,w)
(γT ) = 1{γT ⊂ D1}�(γT ,D \ D1;D)c/2 HD1\γT

(γ (T ),w)

HD\γT
(γ (T ),w)

. (6)

2.4 SLEκ from 0 to x in H

Let x > 0. The measure μH(0, x) can be studied by considering its Radon-Nikodym deriva-
tive with respect to SLEκ from 0 to ∞,

MT = dμH(0, x)

dμH(0,∞)
(γT ). (7)

Here T is a stopping time. If T = ∞, these measures will be singular with respect to each
other, so we will restrict to bounded stopping times T with dist{γT , [x,∞)} > 0. Using the
domain Markov property, we can write

MT = HH\γT
(γ (T ), x)

HH\γT
(γ (T ),∞)

.
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Using the scaling relation we can write formally

HH\γT
(γ (T ), x)

HH\γT
(γ (T ),∞)

= |g′
T (γ (T ))|bg′

T (x)bHH(UT , gT (x))

|g′
T (γ (T ))|bg′

T (∞)bHH(0,∞)
. (8)

If we cancel the identical terms |g′
T (γ (T ))|b , not worrying about the fact that the derivative

is not defined, we get the form of the local martingale

Mt = g′
t (x)bHH(Ut , gt (x)) = g′

t (x)b[gt (x) − Ut ]−2b. (9)

If one is uncomfortable with the argument, one can just check directly that Mt as defined in
(9) is a local martingale satisfying

dMt = 2b

gt (x) − Ut

Mt dUt .

If we weight by the local martingale, Ut satisfies

dUt = 2b

gt (x) − Ut

dt + dWt,

where Wt is a standard Brownian motion in the new measure. In the usual parametrization
of SLE, we could write this as

dUκt = 2bκ

gκt (x) − Uκt

dt + dWκt .

This is an example of a SLE(κ,ρ) process with

ρ = 2bκ = 6 − κ.

If D is a domain as above, then we can write

dμD(0, x)

dμH(0,∞)
= dμD(0, x)

dμD(0,∞)

dμD(0,∞)

dμH(0,∞)
.

If γT ⊂ D and we write xt = gt (x),

dμD(0, x)

dμD(0,∞)
(γT ) = HD\γT

(γ (T ), x)

HD\γT
(γ (T ),∞)

= |g′
T (γ (T ))|bg′

T (x)bHgT (D)(UT , xT )

|g′
T (γ (T ))|b|g′

T (∞)|bHgT (D)(UT ,∞)

= g′
T (x)b�′

T (UT )b�′
T (xT )bHH(�T (UT ),�T (xT ))

�′
T (UT )b�′

T (∞)bHH(0,∞)

= g′
T (x)b�′

T (xT )b[�T (xT ) − �T (UT )]−2b

= F ′
T (x)b[FT (x) − FT (γ (T ))]−2b,

where FT = �T ◦ gT which is the conformal transformation of D \ γT onto H with F(z) =
z + o(1) as z → ∞. From the previous section, if γT ⊂ D, we have

dμD(0,∞)

dμH(0,∞)
(γT ) = �T,D(γ )c/2 HD\γT

(γ (T ),∞)

HH\γT
(γ (T ),∞)

= �T,D(γ )c/2�′
T (UT )b.
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Therefore,

dμD(0, x)

dμH(0,∞)
(γT ) = 1{γT ⊂ D}�T,D(γ )c/2 HD\γT

(γ (T ), x)

HH\γT
(γ (T ),∞)

= 1{γT ⊂ D}�T,D(γ )c/2F ′
T (x)b[FT (x) − FT (γ (T ))]−2b�′

T (UT )b.

2.5 Radial SLEκ

If D is a simply connected domain, z a smooth boundary point of ∂D and w ∈ D, then the
radial SLEκ partition function is defined by HH(0, i) = 1 and otherwise by the scaling rule

HD(z,w) = |f ′(z)|b|f ′(w)|b̃Hf (D)(f (z), f (w)).

In particular, if f : D → H is the conformal transformation with f (z) = i, f (w) = 0,

HD(z,w) = |f ′(z)|b|f ′(w)|b̃ = |f ′(w)|b̃hD(w, z)b,

where hD(w, z) is as in Sect. 2.1. (The partition function is determined up to an arbitrary
multiplicative constant. We have chosen the constant so that HH(0, i) = 1. Another possi-
bility would be to choose HD(1,0) = 1.)

The corresponding probability measure μ#
D(z,w) satisfies the domain Markov property

(from the boundary): given an initial segment γt starting at z, the conditional distribution of
the remainder of the path is that of μD\γt (γ (t),w).

If D is a simply connected subdomain of H as in Sect. 2.2 and w ∈ H, then we can
consider the Radon-Nikodym derivative

dμD(0,w)

dμH(0,∞)
= dμD(0,w)

dμD(0,∞)

dμD(0,∞)

dμH(0,∞)
.

If γT ⊂ D, and we write wt = gt (w),Ft = �t ◦ gt , we get

dμD(0,w)

dμD(0,∞)
(γT ) = HD\γT

(0,w)

HD\γT
(0,∞)

= |g′
T (γ (T ))|b|g′

T (w)|b̃HgT (D)(UT ,wT )

|g′
T (γ (T ))|b|g′

T (∞)|bHgT (D)(UT ,∞)

= |F ′
T (w)|b̃HH(FT (γ (T )),FT (w)).

Therefore,

dμD(0,w)

dμH(0,∞)
(γT ) = 1{γT ⊂ D}�T,D(γ )c/2 HD\γT

(γ (T ),w)

HH\γT
(γ (T ),∞)

= 1{γT ⊂ D}�T,D(γ )c/2�′
T (UT )b|F ′

T (w)|b̃HH(FT (γ (T )),FT (w)).

It is standard to study radial SLEκ as a measure on curves from a boundary point z of the
unit disk D to the origin. Given γT , we let gT be the unique conformal transformation of D \
γT to D with gT (0) = 0, g′

T (0) > 0. In this case we can compare μD(z,0) with the chordal
measure μD(z,w) where w is another point in ∂D. Note that HD(z,w) = hD(z,w)b =
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|z − w|−2b. Then if wT = gT (w),UT = gT (γ (T )),

dμD(z,0)

dμD(z,w)
(γT ) = HD\γT

(γ (T ),0)

HD\γT
(γ (T ),w)

= |g′
T (γ (T ))|b|g′

T (0)|b̃HD(UT ,0)

|g′
T (γ (T ))|b|g′

T (w)|bHD(UT ,wT )

= g′
T (0)b̃|g′

T (w)|−b|wT − UT |2bHD(1,0).

Of course we can determine HD(1,0), but we have written it this way to emphasize that the
constant chosen in the definition of the radial partition function carries over to this formula.
Here we have not discussed the parametrization. It is standard to parametrize radial SLEκ so
that g′

t (0) = et in which case we write g′
T (0)b̃ = eb̃T .

Suppose D is a simply connected subdomain of D including 0 and such that D agrees
with D in a neighborhood of z ∈ ∂D. Let �T be the conformal transformation that maps
gT (D) onto D with �T (0) = 0,�′

T (0) > 0. Let FT = �T ◦ gT which is the conformal
transformation that maps D \ γT onto D with FT (0) = 0,F ′

T (0) > 0. Then, if we write
�T = �(γT ,D \ D;D), we get

dμD(z,0)

dμD(z,0)
(γT ) = 1{γT ⊂ D}�c/2

T

HD\γT
(γ (T ),0)

HD\γT
(γ (T ),0)

= 1{γT ⊂ D}�c/2
T

HDT
(UT ,0)

HD(UT ,0)

= 1{γT ⊂ D}�c/2
T �′

T (0)b̃|�′
T (UT )|b.

As in the chordal case, we can let T → ∞ and show that μD(z,0) as a measure on the entire
path γ is absolutely continuous with respect to μD(z,0) with

dμD(z,0)

dμD(z,0)
(γ ) = 1{γT ⊂ D}�(γ ;D \ D;D)c/2.

The partition function HD(z,0) is the integral of the right-hand side with respect to the
measure μD(z,0).

2.6 A Slightly Different Measure

Define the measure νD,x = νD,x;H by

νH,x[γT ] = μH(0,∞),

and if D is a subset as above and T is a stopping time

dνD,0

dνH,0
(γT ) = �

c/2
T ,D1{γT ⊂ D}.

Roughly speaking, the measure νH,0 is a measure on curves starting at 0 that are known to
continue after time T , but the exact distribution of the remainder of the path is not specified.
More generally, νD1,z;D is defined using the conformal covariance relation

f ◦ νD1,z;D = |f ′(z)|bνf (D1),f (w);f (D).



Partition Functions, Loop Measure, and Versions of SLE 823

Here f is a conformal transformation of the larger domain D. This defines the measure for
smooth boundary points z. We do not define it for nonsmooth points although we can take
ratios

dνD1,z;D
dνD,z;D

,

if D,D1 agree in neighborhoods of z.

2.7 Multiple Curves

We can extend the definition of the measure of the last section to n-tuples of curves γ =
(γ 1, . . . , γ n) in H started at distinct real numbers x = (x1, x2, . . . , xn). If t = (t1, . . . , tn)

we write γ t for (γ 1
t1
, . . . , γ n

tn
). Let T = (T1, . . . , Tn) be a stopping time for the n-tuple of

processes. By this we mean that for each t1, . . . , tn, the event {T1 ≤ t1, . . . , Tn ≤ tn} depends
only on γ t . We define νH,x by saying its Radon-Nikodym derivative with respect to the
product measure

μ̃H(x,∞) := μH(x1,∞) × · · · × μH(xn,∞),

is given by

Yc(γ T ) = dνH,x

dμ̃H,x
(γ T ) =

n∏
j=2

dνH\(γ 1∪···∪γ j−1),xj

dμH(xj ,∞)
(γ

j

T j ).

This may appear to depend on the order in which the curves are written, but there is another
way of writing the derivative that shows symmetry:

Yc(γ T ) = 1{γ j

Tj
∩ γ k

Tk
= ∅,1 ≤ j < k ≤ n}�(γ T )c/2, (10)

where

�(γ T ) = exp

{
n∑

j=2

mj(γ T ,H)

}
,

and mj(γ T ,H) denotes the loop measure of the set of loops that intersect at least j of the n

paths γ 1
T1

, . . . , γ n
T n . If Tj = 0 for j ≥ 2, then Yc(γ T ) = 1.

Suppose we have a partition function ĤD(z;w). Here z = (z1, . . . , zn) are distinct smooth
boundary points of D and w = (w1, . . . ,wl) are other points all of which are distinct and are
either smooth boundary points or interior points. We assume that there exist real numbers
β = (β1, . . . , βl) such that

ĤD(z;w) =
[

n∏
j=1

|f ′(zj )|b
][

l∏
k=1

|f ′(wk)|βk

]
Ĥf (D)(f (z), f (w)).

(There may also be some implicit dependencies, e.g., giving some arcs “reflecting” condi-
tions but we assume that these are conformally invariant.) One possibility is that l = n and
w = (w1, . . . ,wn) are “target” points for the paths. In this case, we let βj = b or b̃ respec-
tively, if wj is a boundary point or an interior point. The Radon-Nikodym derivative of the
corresponding measure μ̂H(x,w) with respect to μ̃H(x,∞) can be written as

Y (γ T )
ĤH\γ

T
(z;w)

H
H\γ 1

T1
(z1,∞) · · ·HH\γ n

Tn
(zn,∞)

, zj = γ j (Tj ).
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Let g
j
t denote the conformal transformation of H \ γ

j
t onto H with g

j
t (z) = z + o(1) as

z → ∞ and let gt denote the corresponding transformation for γ t . Let

V t = (V 1
t
, . . . , V n

t
) = (gT (γ 1(t1)), . . . , gT (γ n(tn))).

The scaling relation implies that we can write (at least formally)

ĤH\γ
T
(z;w)

H
H\γ 1

T1
(z1,∞) · · ·HH\γ n

Tn
(zn,∞)

= HH(V T ;gT (w))

[
n∏

j=1

|g′
T
(zj )|b

|(gj

Tj
)′(zj )|b

][
l∏

k=1

|g′
T
(wk)|βk

]
.

If we define F
j

t
by gt = F

j

t
◦ g

j
tj

and let U
j
t = g

j
t (zj ), we get the expression

dμ̂H(x;w)

dμ̃H(x,∞)
(γ T ) = Y (γ T )HH(V T ;gT (w))

[
n∏

j=1

|(F j

T
)′(Uj

Tj
)|b

][
l∏

k=1

|g′
T
(wk)|βk

]
. (11)

This formula becomes nicer if we allow only one of the curves to move. If only the first path
moves, then: T j = 0 for j ≥ 2; gT = g1

T 1 ; F 1
T

is the identity; and F
j

T
= g1

T 1 for j ≥ 2. Then,

dμ̂H(x,w)

dμH(x1,∞)
(γ 1

T1
) = HH(V T ;g1

T1
(w))

[
n∏

j=2

|(g1
T1

)′(xj )|b
][

l∏
k=1

|(g1
T1

)′(wk)|βk

]
.

2.7.1 Two Paths Going toward Each Other

The first step in Zhan’s proof of the reversibility of SLEκ [11] considers pairs of paths
starting at x1, x2 heading toward each other. As mentioned in Sect. 2.4, HH(x1, x2) =
|x2 − x1|−2b. This is an example with n = 2 and l = 0. The Radon-Nikodym derivative
(11) becomes

dμ̂H(x)

dμ̃H(x,∞)
(γ T ) = Y (γ T )|V 2

T
− V 1

T
|−2b|(F 1

T
)′(U 1

T1
)|b|(F 2

T
)′(U 2

T2
)|.

There is much more to the proof of reversibility but we do not discuss it here.

2.7.2 Non-Intersecting Paths

We describe a slight generalization of the configurational measure discussed in [3]. Sup-
pose z = (z1, . . . , zn) are distinct smooth boundary points of simply connected D and
w = (w1, . . . ,wn) are n other points in D. The points w1, . . . ,wn can be boundary or in-
terior points, but we impose the topological condition that there exist nonintersecting paths
γ 1, . . . , γ n in D with γ j connecting zj to wj . We define the partition function HD(z,w) and
measure μD(z,w) by induction on n. It will satisfy the conformal covariance condition

HD(z,w) =
[

n∏
j=1

|f ′(zj )|b
][

n∏
j=1

|f ′(wj )|bj

]
Hf (D)(f (z), f (w)),

where bj = b or b̃, respectively, depending if wj is an interior or a boundary point.
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• If n = 1, HD(z,w) is the usual chordal or radial SLEκ partition function, depending on
whether w is an interior or a boundary point. We have the measure

μD(z,w) = HD(z,w)μ#
D(z,w).

• Suppose the partition function and measure have been defined for n − 1. For any path
γ n ⊂ D connecting zn to wn, let

Z(γ n) = HD\γ n(ẑ, ŵ),

where ẑ = (z1, . . . , zn−1) and ŵ = (w1, . . . ,wn−1). Then HD(z,w) is the integral of Z(γ n)

with respect to the measure μD(zn,wn).
• The marginal distribution on γ n of μD(z,w) has Radon-Nikodym derivative Z with re-

spect to μD(zn,wn).
• Given γ n, the conditional distribution of (γ 1, . . . , γ n−1) is μ#

D\γ n(ẑ, ŵ).

In this case the measure HD(z,w) is absolutely continuous with respect to the product mea-
sure

μD(z1,w1) × · · · × μD(zn,wn)

with Radon-Nikodym derivative of the form (10). Using this form we can see that the mea-
sure is independent of the order that we write the pairing (z1,w1), . . . , (zn,wn). The partition
function and measure do depend on the pairing.

One can also define a partition function H(z;w) and a measure μ(z;w) where one does
not specify the pairing. This is given by the sum of the partition function and measure over
all possible pairings (with the measure and partition function equaling zero if a pairing does
not satisfy the topological condition). We can also start with 2n boundary points z1, . . . , z2n

and sum the partition function and measure over all complete pairings of the 2n vertices.
Here we grow 2n paths.

Problem The symmetry in the above construction was shown by the symmetry of the
Radon-Nikodym derivative with respect to product measure. One can do the same construc-
tion for κ > 4. For ease assume n = 2 and 4 < κ < 8. Let us choose a measure on paths
(γ 1, γ 2) connecting boundary points (z1,w1), (z2,w2) in D.

• The marginal distribution on γ 1 with respect to μD(z1,w1) is given by HD\γ 1(z2,w2).
Here D \ γ 1 represents the connected component that contains z2,w2 on the bound-
ary. If z2,w2 are not boundary points of the same connected component of D \ γ 1,
HD\γ 1(z2,w2) = 0.

• Given γ 1, the distribution of γ 2 is given by μ#
D\γ 1(z2,w2).

On the event E = {γ 1 ∩ γ 2 = ∅}, this measure is absolutely continuous with respect to the
product measure with a Radon-Nikodym derivative as above. In particular, on this event the
measure does not depend on the order of γ 1, γ 2. However, the complement of E has positive
measure. The question is: does this measure depend on the order of γ 1, γ 2?

2.7.3 Paths Going to the Same Point

The partition function for n non-intersecting SLEκ paths going to the same point boundary
point w can be obtained from the previous measure by letting the points wj approach w.
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The partition function is

HH(x;∞) =
∏
j<k

|xk − xj |a, a = 2/κ,

combined with the scaling relation

HD(z,w) = |f ′(z)|b|f ′(w)|ξ(n)Hf (D)(f (z), f (w)),

where f ′(z) is shorthand for f ′(z1) · · ·f ′(zn) and ξ(n) an intersection exponent that can be
calculated.

3 Speculations and Open Problems

3.1 Multiply Connected Domains

If D is a simply connected domain of H with H \ D bounded and dist(0,H \ D) > 0, the
partition function is given by

HD(0,∞) = E
[
1{γ ⊂ D}�(γ,H \ D;H)c/2

]
. (12)

The partition function is extended to other domains by the scaling rule

HD(z,w) = |f ′(z)|b|f ′(w)|bHf (D)(f (z), f (w)).

One way to extend HD(z,w) to multiply connected domains where z,w are smooth bound-
ary points on the same component of ∂D is to use (12). Assuming HD(0,∞) < ∞, we can
define the measure

μD(0,∞) = HD(z,w)μ#
D(0,∞),

by saying that μ#
D(0,∞) is the usual SLEκ weighted by the partition function HD(z,w).

Finiteness of HD(0,∞) for κ ≤ 8/3 is immediate since c ≤ 0; in fact, this shows that the
quantity is monotone in D. For κ = 2, HD(0,∞) equals the probability that a Brownian
excursion in H stays in D and if z,w are smooth boundary points, HD(z,w) = hD(z,w); for
other values of κ we do not expect HD(z,w) = hD(z,w)b for multiply connected domains.
For κ = 8/3, HD(0,∞) = P{γ ⊂ D}. The proof of finiteness for simply connected domains
and 8/3 < κ ≤ 4 uses the known form of the partition function �′

D(0)b . We certainly expect
this to be finite for this range of κ , but this is open.

Problem Show that if 8/3 < κ ≤ 4, and D is a finitely connected subdomain of H with
H \ D bounded and dist(0,H \ D) > 0, then HD(0,∞) as defined in (12) is finite. Is it
monotone in D?

In order to define μD(z,w) where z,w are in different components of ∂D, one needs to
define the measure for at least one such case, say an annulus. Once this is defined, one can
use an expression such as (12) to define it for all finitely connected D. The next section will
discuss the case of an annulus.
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3.2 Annulus

Let Ar denote the annulus Ar = {r < |z| < 1} with boundary circles Cr,C1 and let
z ∈ C1,w ∈ Cr . We will discuss the version of chordal SLEκ in Ar from z to w which is
analogous to that discussed in the previous section. For ease we choose z = 1,w = reiθ . We
restrict to κ ≤ 4.

3.2.1 First Approach

If γ : [0, t] → Ar is a simple curve with γ (0) = z, γ (t) = w,γ (0, t) ⊂ Ar , then there ex-
ists a simply connected domain D ⊂ Ar that agrees with Ar in neighborhoods of z,w and
such that γ ⊂ D. Hence, in order to define the measure μAr (z,w) it suffices to define
μAr (z,w;D), the restriction of μAr (z,w) to curves with γ ⊂ D, for every simply con-
nected domain D ⊂ Ar that agrees with Ar near w,z. We do so by stating that

dμAr (z,w;D)

dμD(z,w)
(γ ) = �(γ, Ar \ D; Ar )

−c/2.

This is analogous to (5); the sign is changed because the numerator refers to the larger do-
main and the denominator to the subdomain. It is straightforward to show that this definition
is consistent and hence gives a measure μAr (z,w). We define similarly μA(z,w) for any
conformal annulus A and smooth boundary points z,w on different components of ∂A.
This definition satisfies the conformal covariance rule

f ◦ μA(z,w) = |f ′(z)|b|f ′(w)|bμf (A)(f (z), f (w)).

This is easily verified by noting that for each subdomain D as above

f ◦ μD(z,w) = |f ′(w)|b|f ′(z)|bμD(f (z), f (w))

and using conformal invariance of the loop measure. It does not follow immediately that
μA(z,w) is a finite measure, which we certainly expect to be true. For 8/3 < κ ≤ 4, since
c > 0, it follow immediately that |μA(z,w;D)| < ∞ for each simply connected D. This is
not immediate for κ ≤ 8/3 by the above construction but the second approach below shows
that for these κ , |μA(z,w)| < ∞. Finiteness is needed to define the probability measure
μ#

A(z,w). We define

HA(z,w) = |μA(z,w)|,
and note that HA satisfies the scaling rule

HA(z,w) = |f ′(z)|b|f ′(w)|bHf (A)(f (z), f (w)).

Problem Prove that HAr (1, reiθ ) < ∞ if 8/3 < κ ≤ 4.

In the special case κ = 2, the partition function is known, HA(z,w) = hA(z,w). This
uses special properties of κ = 2 related to the loop-erased random walk and should not be
true for other values of κ .
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3.2.2 Second Approach

Let w = reiθ with 0 ≤ θ < 2π . For each simple curve γ connecting 1 to w there is an integer
m = m(γ ) such that the continuous argument θ(s) of γ (s) with θ(0) = 0 equals θ + 2πm

at the terminal point. We write

μAr (1,w) =
∞∑

m=−∞
μAr ,m(1,w),

where μAr ,m(1,w) denotes μAr (1, reiθ ) restricted to curves whose continuous argument is
θ + 2πm.

Let Vr = {x + iy : 0 < y < log r} and F(z) = eiz which maps Vr to Ar . Note that F

is locally conformal but not globally one-to-one. If ẑ = seiφ , the preimage of ẑ under F

consists of all the points

[φ + 2πm] − i log s, m ∈ Z.

For each simple curve in Ar γ connecting 1 and w, let γ̃ be the continuous preim-
age of γ under F ; γ̃ is a simple curve in Vr connecting 0 to w̃ = (θ + 2πm) − i log r ,
where m = m(γ ). Similarly, if D is a simply connected domain as above, there is a sim-
ply connected domain D̃ with 0 ∈ ∂D̃ such that F maps D̃ conformally onto D with
F(0) = 1,F (θ + 2πm − i log r) = w. Let

νm(1,w;D) = νAr ,m(1,w;D) = r−b
[
F ◦ μD̃(0, (θ + 2πm) − i log r)

]
.

The factor r−b equals |F ′(0)|−b|F ′(θ + 2πm − i log r)|−b . Let νm(1,w) be the measure
obtained by considering the consistent family νm(1,w;D) over all D. Note that

νm(1,w) = νAr ,m(1,w) = r−b
[
F ◦ μ∗

Vr
(0, θ + 2πm − i log r)

]
,

where μ∗
Vr

(0, x − i log r) is μVr (0, x − i log r) restricted to curves γ̃ such that F ◦ γ̃ is

simple. Let νAr (1,w) = ∑
m∈Z

νm(1,w). Since D̃ is a simply connected subdomain of the
simply connected domain Vr , we know that

dμD̃(0, (θ + 2πm) − i log r)

dμVr (0, (θ + 2πm) − i log r)
(γ̃ ) = �(γ̃ ,Vr \ D̃;Vr)

c/2.

Similarly, we write

dμD(1,w)

dμAr (1,w)
(γ ) = �(γ, Ar \ D; Ar )

c/2.

Hence if γ is a simple curve contained in simply connected D,

dμAr (1,w)

dνAr (1,w)
(γ ) =

[
�(γ̃ ,Vr \ D̃;Vr)

�(γ, Ar \ D; Ar )

]c/2

.

To understand the right-hand side we need to consider the difference between the loop mea-
sure in Ar restricted to curves that intersect γ and the image under F of the loop measure in
Vr restricted to curves that intersect γ̃ . In both cases we will explore the loop measure using
the curve γ or γ̃ starting at 1 or 0, respectively. We will not explain this here in detail, but
for every unrooted loop ω in Ar that intersects γ , there is a smallest s such that γ (s) ∈ ω.
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In the exploration process we “find” the unrooted loop ω at time s. It is associated to the
corresponding rooted loop ω with root γ (s) which is a “boundary bubble” in the domain
Ar \ γs . One similarly explores loops in Vr . There are two types of loops that appear in one
of the measures but not the other.

• If a loop in Ar has nonzero winding number about zero, it is not an image of a loop in Vr .
Let q(r) < ∞ denote the total mass of the set of loops of nonzero winding number in Ar .
Topological considerations imply that every such loop intersects γ and Ar \D. As r → 0,
q(r) ∼ [log r]/6 (see Sect. 4).

• If a loop rooted at γ̃ (s) in Vr intersects one of the 2πk translates of γ̃s , then the image
of this loop is not in the loop measure in Ar . This is because at time s, the exploration
process in Vr is exploring loops in Vr \ γ̃s while the exploration process in Ar is exploring
loops in Ar \γs . Loops in Vr \ γ̃s that intersect a translate of γ̃s do not correspond to loops
in Ar \ γs .

Suppose the argument θ(s) of γ (s) is defined continuously. For each unrooted loop ω

in Ar , let s be the smallest number with γ (s) ∈ ω, and define the argument continuously on
ω so that the argument agrees at γ (s). Let k = k(ω,γ ) be the number of nonzero integers j

such that there is an intersection of ω and γ at which the argument of ω minus the argument
of γ equals 2πk. Let ρk(γ ) denotes the loop measure of the set of ω with k(ω,γ ) = k, and

β(γ ) =
∞∑

k=1

kρk(γ ).

β(γ ) is finite for each γ but depends on γ . If γ winds many times around the origin, then
β(γ ) can be very large. We see that

dμAr (1,w)

dνAr (1,w)
(γ ) = exp

{
c
2
[β(γ ) − q(r)]

}
.

Conformal transformation shows that HVr (0, x + ir) decays exponentially in x. Using
this, we get immediately that HAr (1,w) < ∞ for κ ≤ 8/3 since c ≤ 0. Although we strongly
believe that it is true, it has not been proved that HAr (1, reiθ ) < ∞ for 8/3 < κ ≤ 4. Despite
this fact, we will assume that it is true.

The rest of this section will be speculative assuming that HAr (1, reiθ ) is finite and
μAr (1, reiθ )# is well defined. If |θ | < π , then as r → 1−, we should have

HAr (1, reiθ ) ∼ HAr\(−r,−1)(1, reiθ ). (13)

The reason is that for r near one, HAr (1, reiθ ) should be concentrated on paths that do not
intersect the negative real axis. The asymptotics of HAr (1, reiθ ) as r tends to zero are not as
obvious. We certainly expect that the asymptotic value is independent of θ . In Sect. 3.4 we
give an argument to support the conjecture that

HAr (1, r) ∼ crb̃−b[log(1/r)]c/2, r → 0. (14)

For κ = 2 this can be verified by exact computation of hAr (1, r).

Problem Prove or disprove (13) and (14).
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3.3 Annulus and Radial SLE

Suppose C is a simple closed curve surrounding the origin contained in the unit disk. Let A

denote the conformal annulus bounded by C ∪ ∂D and suppose that w is a smooth boundary
point of C. Let z ∈ ∂D. Let γ denote a radial SLEκ curve from z to 0 in D with conformal
transformations gt parametrized so that g′

t (0) = et . Let τ = inf{t : γ (t) ∈ C}. If t < τ , we
let Ct = gt (C),wt = gt (w), and At the conformal annulus bounded by ∂D and Ct . Then if

Yt = 1{t < τ }�(γt ,C;D)c/2,

we can write

dμA(z,w)

dμD(z,0)
(γT ) = YT

HA\γT
(γ (T ),w)

HD\γT
(γ (T ),0)

= YT

|g′
T (γ (T ))|b|g′

T (w)|bHAT
(UT ,wT )

|g′
T (γ (T ))|b|g′

T (0)|b̃HD(UT ,0)

= YT e−b̃T |g′
T (w)|bHAT

(UT ,wT )HD(1,0)−1.

This should give a local martingale.

3.4 Radial Started from the Interior

We end with discussion of radial SLEκ from an interior point to a boundary point for κ ≤ 4.
To describe this we consider its Radon-Nikodym derivative with respect to whole plane
SLEκ . Whole plane SLE as defined in [4] is a probability measure μC = μ#

C
(0,∞) on paths

γ (−∞,∞) with γ (−∞) = 0. It is described in terms of the conformal maps

Ft : C \ γ [−∞, t] → C \ D.

The parametrization and choice of the maps Ft are such that

Ft(z) = e−t z + O(1), z → ∞.

It is defined so that it has the following property: given the path up to some time t > −∞, the
remainder of the path has the distribution of radial SLEκ from γ (t) to ∞ in the domain C\γt .

If T is a stopping time for whole plane SLE such that −∞ < T < ∞, then μ#
C

can
be considered as a measure μ#

C,T on bounded curves γ [−∞, T ]. If T = t is constant, and
fs(z) = esz, then we have the scaling rule

fs ◦ μ#
C,t = μ#

C,t+s .

It is convenient to consider a measure that is not a probability measure. For any stopping
time T with T > −∞, we define the measure, which we write as μC (or μC,T if we need
to be explicit) whose Radon-Nikodym derivative with respect to μ#

C,T is e−b̃T . If T = t is
constant we get the conformal covariance rule

fs ◦ μC,t = eb̃sμC,t+s = |f ′
s (0)|b̃μC,t+s .
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When studying the Brownian loop measure in C, one technical issue arise. If K1,K2 are
two nonpolar sets, then �(K1,K2;C) = ∞. Indeed, if K1 is bounded and nonpolar, one can
show (see (24))

�(K1,D2n+1 \ D2n;D2n ) = 1

n
+ O

(
n−2

)
, n → ∞. (15)

For large n, most loops in D2n+1 that intersect both K1 and D2n+1 \ D2n also intersect nonpo-
lar K2. In fact, the measure of the set of loops in D2n+1 that intersect D2n+1 \ D2n and K1 but
do not intersect K2 decays like O(n−2). This allows us to define �∗(K1,K2) for bounded
K1 by

�(K1,K2;DR) = log logR + �∗(K1,K2) + o(1), R → ∞.

�∗ is symmetric in K1,K2; invariant under rotations, dilations, and translations; and satisfies
the following domain Markov property: if K1 ⊂ K3, then

�∗(K3,K2) = �∗(K1,K2) + �(K3 \ K1,K2;C \ K1).

(There is some arbitrariness in the definition of �∗; for every c1, � + c1 satisfies the same
properties.) If K1 is polar, then �(K1,K2;DR) = 0 and hence �∗(K1,K2) = −∞. If K1 ∩
K2 is nonpolar, then �(K1,K2;DR) = ∞ for large R and hence �∗(K2,K2) = ∞.

Using (15), one can show that as r → 0,

�∗(r∂D, ∂D) = − log log(1/r) + O(1).

Suppose D is a domain containing 0 and z is a smooth boundary point of D. Let τ =
inf{t : γ (t) ∈ ∂D}. If t < τ , let Dt = Ft(D), zt = Ft(z). Let T be a stopping time with
T < τ . Then we define

dμD(0, z)

dμC(0,∞)
(γT ) = c0 exp

{
c
2
�∗(γT , ∂D)

}
1{γT ⊂ D}HDT

(UT , zT )|F ′
T (z)|b. (16)

The positive constant c0 can be chosen arbitrarily although there should be a natural choice
that is most convenient. The arbitrariness in the definition of �∗ can be handled by choosing
c0 appropriately so we will fix the definition of �∗ as above.

This definition has been chosen so that is satisfies the following domain Markov property,

• In the probability measure μ#
D(0, z) on paths γ [0, tγ ], the conditional distribution of

γ [t, tγ ] given γt is that of

μ#
D\γt

(γ (t), z).

This last measure is the probability measure of annulus SLEκ as described in the previous
section.

Let us consider some implications of (16). For ease let us choose D = D and let T

equal a constant −t . We will consider what happens as t → ∞. In this case the typical
radius of γt is of order e−t . On D, FT (z) is about etz and DT is very close to the annulus
At = {1 < |z| < et }. Hence |F ′

T (z)|b ∼ ebt . Since �∗(γT , ∂D) ∼ − log log et , we get

exp

{
c
2
�∗(γT , ∂D)

}
� t−c/2.

We also have μC(γT ) = eb̃t .
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It is our hope that μD(0, z) is the reversal of μD(z,0) and hence we would expect it to
have the same total mass which in this case is HD(1,0). We also expect this to be the total
mass on the measure of paths γt , so this gives

c0e
b̃t t−c/2ebtHAt (1, et ) ∼ HD(1,0), t → ∞.

(For large t , we expect that HAt (eiθ , et+iθ1) ∼ HAt (1, et ).) This gives the conjecture

HAt (1, et ) ∼ c1e
−(b+b̃)t tc/2.

If we dilate by a factor of e−t , and let r = e−t , this gives the prediction

HAr (r,1) ∼ c1r
b̃−b[log(1/r)]c/2.

If κ = 2, we know that

HAr (r,1) = hAr (r,1) ∼ c

r log(1/r)
,

which verifies the prediction in this case.

4 The Brownian Loop Measure

There are a number of equivalent ways to define the (Brownian) loop measure. While it is a
measure on unrooted loops, it is easiest to define it in terms of rooted loops and then “forget
the roots”. One defines the measure on C and then defines it on subdomains by restriction.

The usual way is by considering the measure on rooted loops given by

1

2πt2
dt × area × Brownian bridge.

Here “Brownian bridge” refers to the probability measure on paths of time duration 1 given
by Brownian motion conditioned to be at the origin at time 1. This is what one gets if one
considers choosing the root uniformly over an unrooted loop. While this is a good way to
define it for showing conformal invariance, there are equivalent definitions that are easier
for computation.

One way is to associate with each unrooted loop a rooted loop whose root is the point of
smallest imaginary part. By doing this we write the measure as

1

2πt2
dt × area × Brownian bridge/bubble. (17)

Here Brownian bridge/bubble refers to the probability measure on Brownian paths of
time duration 1 conditioned to return to the origin at time 1 and stay in the upper half
plane between times 0 and 1. A Brownian bridge/bubble consists of two independent one-
dimensional processes: a Brownian bridge in the x-component and a Brownian excursion in
the y-component. The state space for this measure are triples (t, z, γ ∗) where γ ∗ is a loop in
the upper half plane of time duration one beginning and ending at the origin. We associate
to this triple the loop γ which is obtained from γ ∗ by Brownian scaling so that it has time
duration t and then translated so that it is rooted at z. The expression (17) gives a measure
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on loops rooted at their point of minimal imaginary part and the Brownian loop measure is
obtained by “forgetting the root”.

This leads to studying Brownian boundary bubbles. The Brownian boundary bubble mea-
sure in H at 0, mH(0), is an infinite measure on loops (or bubbles) rooted at 0 and otherwise
staying in H. Let ξ # denote the probability measure associated to Brownian bridge/bubbles
of time duration one and let ξ #

t denote the similar probability measure for time duration t

obtained by usual Brownian scaling. Then we define

mH(0) =
∫ ∞

0

1

2t2
ξ #
t dt. (18)

Note that a factor of π has been included. We can write the Brownian loop measure as

1

π

∫ ∞

−∞

∫ ∞

−∞
mH+iy(x + iy) dx dy, (19)

where mH+iy(x + iy) is defined in the obvious way by translation of mH(0).
Another way to obtain the bubble measure is as follows. If z ∈ H, x ∈ R, let m̂H(z, x)

denote the measure on paths corresponding to Brownian motion starting at z and leaving H

at x. It is normalized to have total measure equal to the Poisson kernel which we recall is
hD(z, x)/π . We then define

mH(0) = π lim
ε→0+

ε−1m̂H(iε,0). (20)

To see this (and to check the multiplicative constant), it is easiest to split the loop into
independent imaginary and real parts. If we start a one-dimensional Brownian motion at
ε > 0 then the time of the first visit to the origin has density

ε√
2πt3

e−ε2/(2t).

If we divide by ε let ε go to zero we see that the density for one-dimensional loops of time
duration t restricted to stay positive is given by (2πt3)−1/2. The real part is a Brownian loop
with no restrictions; it has density (2πt)−1/2. Hence the two-dimensional H-bubbles have
density (2πt2)−1 which agrees with (18) up to the factor of 1/π .

For each subdomain D ⊂ H with dist(0,H \ D) > 0, we define �(0,D) = �(0,D;H)

to be the mH(0) measure of the set of loops that intersect H \ D. Although mH(0) is an
infinite measure, �(0,D) is finite. The bubble measure is normalized so that �(0,D

+) = 1
where D

+ = H∩D, see (21). The Brownian bubble measure mD(z) can be defined similarly
to (20) for general domains D and smooth boundary points z. It is conformally covariant:
if f : D → f (D) is a conformal transformation, and z, f (z) are smooth boundary points
of D, f (D) respectively, then

f ◦ mD(z) = |f ′(z)|2mf (D)(f (z)).

The Brownian bubble measure also satisfies the restriction property: if D ⊂ D1, z is a
smooth boundary point of D and ∂D,∂D1 agree in neighborhoods of z, then mD(z) is
mD1(z) restricted to loops in D. From (20), we get the formula

�(0;D) =
∫

∂D∩H

hH(z,0) dm̂D(0, z),
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where m̂ denotes the excursion measure. (Recall that we have defined hD to be π times the
usual Poisson kernel.) If ∂D ∩ H is smooth, we can write

�(0;D) = 1

π

∫
∂D∩H

hH(z,0)h∂D(0, z)|dz|.

In the example D = D
+, hH(eiθ ,0) = sin θ, and by choosing a suitable conformal transfor-

mation, one can check that hD+(0, eiθ ) = 2 sin θ and hence

�(0,D
+) = 1

π

∫ π

0
(sin θ)(2 sin θ) dθ = 1. (21)

If D1 ⊂ D, we define �(z,D1;D) to be the mD(z) measure of loops that intersect D \ D1.
If f : D → f (D) is a conformal transformation, conformal covariance implies

�(z,D1;D) = |f ′(z)|2�(f (z), f (D1);f (D))

(assuming smoothness at the boundary).
The expression (19) uses a “foliation” of C by horizontal lines. By conformal covariance,

we can use other foliations, say by concentric circles, which gives the expression

1

π

∫ 2π

0

∫ ∞

0
mrD(reiθ )r dr dθ. (22)

This formulation chooses the root of the loop to be the point of greatest absolute value. By
inversion, we could also choose the point of smallest absolute value giving the expression

1

π

∫ 2π

0

∫ ∞

0
m

C\rD
(reiθ )r dr dθ. (23)

Note that we are using the fact that the scaling exponent for the Brownian bubble measure
is 2 and hence the derivative term does not appear in area integrals.

We show how to determine asymptotics of some quantities related to the loop measure.
Let DR = {|z| < R} and D

+
R = DR ∩ H. We start by showing that

�(D, ∂DR;D2R) ∼ log 2

logR
, R → ∞. (24)

Using (23), we get

�(D, ∂DR;D2R) = 1

π

∫ 2π

0

∫ 1

0
�(reiθ ,DR \ Dr;D2R \ Dr )r dr dθ.

If R > 1, the probability that a Brownian motion starting at Reiθ hits the circle of radius 1
before hitting the circle of radius 2R is

log 2

log(2R)
.

Hence as R → ∞,

hD2R\D(Reiθ , eiφ) ∼ 1

2

log 2

logR
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(we use the fact that in the R → ∞ limit, the left-hand side does not depend on the angles
θ,φ). If f (z) = fR(z) denotes the probability that a Brownian motion starting at z reaches
the circle of radius R before the circle of radius 1 then

f (z) = log |z|
logR

, 1 ≤ |z| ≤ R.

In particular, its normal derivative at eiφ equals 1/ logR. Therefore,

�(eiθ ,DR \ D;D2R \ D) ∼ log 2

2 log2 R
, R → ∞.

By conformal covariance, we get

�(reiθ ,DR \ Dr ;D2R \ Dr ) = r−2�(eiθ ,DR/r \ D;D2R/r \ D) ∼ log 2

2r2 log2(R/r)
.

Therefore,

1

π

∫ 2π

0

∫ 1

0
�(reiθ ;DR \ Dr;D2R \ Dr )r dr dθ ∼ 1

π

∫ 2π

0

∫ 1

0

log 2

2r2 log2(R/r)
r dr dθ = log 2

logR
.

We will now show how to derive

�(D+
1/R, ∂D

+;H) = �(D+, ∂D
+
R;H) ∼ R−2, R → ∞. (25)

The first equality holds by conformal invariance. Using (22) and the restriction property, we
have

�(D+, ∂D
+
R;H) = 1

π

∫ π

0

∫ 1

0
�(reiθ ,D

+
R \ Dr;H \ Dr )r dr dθ. (26)

By conformal covariance,

�(reiθ ,DR \ D+
r ;H \ Dr ) = r−2�(eiθ ,DR/r \ D;H \ D).

The map g(z) = z + z−1 maps H \ D conformally onto H with |g′(eiθ )|2 = 4 sin2 θ. As
R → ∞,

�(eiθ ,DR/r \ D;H \ D) = |g′(eiθ )|2�(g(eiθ ), g(DR/r \ D))

∼ |g′(eiθ )|2�(0,DR/r )

= 4 sin2 θ(r/R)2.

Since

1

π

∫ π

0

∫ 1

0
4r sin2 θ dr dθ = 1,

we get (25) by plugging into (26).
The set D

+√
r

has half-plane capacity r . One can show that if Kr is any collections of sets
decreasing to 0 as r → 0+, with half-plane capacity r , then

�(Kr,H \ D;H) ∼ r,



836 G.F. Lawler

and more generally

�(Kr,H \ D;H) ∼ r�(0,D).

A straightforward calculation also gives for simply connected D, �(0,D) = −Sf (0)/6
where f : D → H is a conformal transformation. Therefore, if γ is a simple curve para-
metrized so that γt has half-plane capacity at ,

�(γt ,H \ D;H) = a

∫ t

0
�(Us;gs(D))ds.

This holds for all D whether simply connected or not. For simply connected D we also get

�(γt ,H \ D;H) = −a

6

∫ t

0
S�gs(D)(Us) ds.

4.1 Annulus

Let As,r denote the annulus As,r = {s < |z| < r} and As = As,1. The loop measure in the
annulus As can be written using (22) as

1

π

∫ 2π

0

∫ 1

s

ms,r (re
iθ )r dr dθ,

where ms,r = mAs,r . We can write

ms,r (z) =
∞∑

k=−∞
ms,r,k(z),

where ms,r,k(z) denotes ms,r (z) restricted to loops with winding number k about the origin.
This is a finite measure if k �= 0; let us denote the total mass by J (s, r, k). By conformal
covariance,

J (s, r, k) = r−2J (s/r,1, k).

Let F(z) = eiz. For k �= 0,

ms,1,k(1) = πF ◦ m̂Dt (0,2πik),

where m̂ denotes the excursion measure, t = − log s and Dt = {x + iy : 0 < y < t}. Also,

ms,1,0(1) = F ◦ mDt (0).

(The excursion measure does not have the factor of π in its definition but the bubble measure
does. This is why these expressions differ by that factor.)

Let ft (z) = eπz/t . Then ft maps Dt conformally onto H and hence

hDt (0,2πk) = |f ′
t (0)||f ′

t (2πk)|hH(ft (0), ft (2πk))

= (π/t)2e2kπ2/t
[
e2kπ2/t − 1

]−2

= π2

4t2 sinh2(kπ2/t)

= 1

4π2k2

[
1 + O(k2/t2)

]
.
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For fixed k,

J (s, r, k) ∼ r−2 1

4π2k2
.

Hence (using the error estimate above, we omit the details)

1

π

∫ 2π

0

∫ 1

s

J (s, r, k)r dr dθ ∼ 1

2π2k2
log(1/s).

Using
∑

k �=0 k−2 = π2/3, we see that the measure of the set of loops with nonzero winding
number is asymptotic to (1/6) log(1/s).

References

1. Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetry of critical fluctuations in
two dimensions. J. Stat. Phys. 34, 763–774 (1984)

2. Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetry in two-dimensional quan-
tum field theory. Nucl. Phys. B 241, 333–380 (1984)

3. Kozdron, M., Lawler, G.: The configurational measure on mutually avoiding SLE paths. In: Binder, I.,
Kreimer, D. (eds.) Universality and Renormalization: From Stochastic Evolution to Renormalization of
Quantum Fields, pp. 199–224. Am. Math. Soc., Providence (2007)

4. Lawler, G.: Conformally Invariant Processes in the Plane. Am. Math. Soc., Providence (2005)
5. Lawler, G.: Schramm-Loewner evolution. Notes from Lectures at 2008 IAS-Park City Institute (2009, to

appear)
6. Lawler, G., Werner, W.: The Brownian loop soup. Probab. Theory Relat. Fields 128, 565–588 (2004)
7. Lawler, G., Schramm, O., Werner, W.: Conformal restrictionthe chordal case. J. Am. Math. Soc. 16,

917–955 (2003)
8. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Isr. J. Math. 118,

221–288 (2000)
9. Werner, W.: Random planar curves and Schramm-Loewner evolutions. In: Ecole d’Eté de Probabilités

de Saint-Flour XXXII–2002. Lecture Notes in Mathematics, vol. 1840, pp. 113–195. Springer, Berlin
(2004)

10. Werner, W.: The conformally invariant measure on self-avoiding loops. J. Am. Math. Soc. 21, 137–169
(2008)

11. Zhan, D.: Reversibility of chordal SLE. Ann. Probab. 36, 1472–1494 (2008)


	Partition Functions, Loop Measure, and Versions of SLE
	Abstract
	Introduction
	Partition Functions and SLE
	Chordal SLE as a Probability Measure
	Simply Connected Domains
	Chordal SLE as a Nonprobability Measure
	SLEkappa from 0 to x in H
	Radial SLEkappa
	A Slightly Different Measure
	Multiple Curves
	Two Paths Going toward Each Other
	Non-Intersecting Paths
	Problem

	Paths Going to the Same Point


	Speculations and Open Problems
	Multiply Connected Domains
	Problem

	Annulus
	First Approach
	Problem

	Second Approach
	Problem


	Annulus and Radial SLE
	Radial Started from the Interior

	The Brownian Loop Measure
	Annulus

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


